CATEGORY THEORY Dr. Paul L. Bailey

Activity 4 - Solutions Friday, September 13, 2019 Name:

Definition 1. Let G be a group. The *center* of G is

$$Z(G) = \{ z \in G \mid gz = zg \text{ for all } g \in G \}.$$

Problem 1. Let G be a group. Show that $Z(G) \leq G$.

Solution. To show that something is a subgroup, we show (S0), (S1), and (S2).

(S0) Let $g \in G$. By definition, $1 \cdot g = g \cdot 1 = g$. Thus, $1 \in Z(G)$.

(S1) Let $z_1, z_2 \in Z(G)$ and let $g \in G$. Then

$g(z_1 z_2) = (g z_1) z_2$	by associativity in G
$=(z_1g)z_2$	because $z_1 \in Z(G)$
$=z_1(gz_2)$	by associativity in G
$=z_1(z_2g)$	because $z_2 \in Z(G)$
$=(z_1z_2)g$	by associativity in G .

Thus $z_1 z_2 \in Z(G)$.

(S2) Let $z \in Z(G)$ and let $g \in G$. Since G is a group, z^{-1} exists in G, and $z^{-1}z = zz^{-1} = 1$. Since $z \in Z(G)$, we have gz = zg. Multiply by z^{-1} on the left to get $z^{-1}gz = g$. Multiply by z^{-1} on the right to get $z^{-1}g = gz^{-1}$. Thus $z^{-1} \in Z(G)$.

Definition 2. Let G and H be groups, and let $f: G \to H$. We say that f is a group homomorphism if

 $f(g_1g_2) = f(g_1)f(g_2).$

We say that f is a group isomorphism if f is a bijective homomorphism.

Problem 2. Let $f: G \to H$ be a group isomorphism. Show that $f^{-1}: H \to G$ is a group isomorphism.

Solution. We know that the inverse of a bijective function is a bijective function; it remains to show that it is a homomorphism.

Let $h_1, h_2 \in H$. Since f is bijective, there exist unique $g_1, g_2 \in G$ such that $f(g_1) = h_1$ and $f(g_2) = h_2$. In this case, $g_1 = f^{-1}(h_1)$ and $g_2 = f^{-1}(h_2)$. Now

$$f^{-1}(h_1h_2) = f^{-1}(f(g_1)f(g_2))$$

= $f^{-1}(f(g_1g_2))$ because f is a homomorphism
= g_1g_2 because f^{-1} is the inverse of f
= $f^{-1}(h_1)f^{-1}(h_2).$